
Two-body problem in graphene

J. Sabio,1,2 F. Sols,2 and F. Guinea1

1Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Inés de la Cruz 3, E-28049 Madrid, Spain
2Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain

�Received 4 November 2009; revised manuscript received 28 December 2009; published 27 January 2010�

We study the problem of two Dirac particles interacting through nonrelativistic potentials and confined to a
two-dimensional sheet, which is the relevant case for graphene layers. The two-body problem cannot be
mapped into that of a single particle, due to the nontrivial coupling between the center-of-mass and the relative
coordinates, even in the presence of central potentials. We focus on the case of zero total momentum, which is
equivalent to that of a single particle in a Sutherland lattice. We show that zero-energy states induce features
such as discontinuities in the relative wave function, for particles interacting through a step potential, and a
concentration of relative density near the classical turning point, if particles interact via a Coulomb potential.
In the latter case we also find that the two-body system becomes unstable above a critical coupling. These
phenomena may have bearing on the nature of strong-coupling phases in graphene.
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I. INTRODUCTION

The problem of interactions in graphene layers was a sub-
ject of research even before its isolation and characterization
in the laboratory.1,2 It is peculiar due to its two-dimensional
nature and to the honeycomb lattice structure into which ions
are arranged. In the low-energy limit, the electronic proper-
ties are described by a Dirac-like equation for massless and
chiral electrons.3 Undoped graphene has a vanishing density
of states at the Fermi level and, therefore, a diverging screen-
ing length, so interactions are expected to yield a more sin-
gular behavior than in a conventional Fermi liquid picture,
already well established in metals and electron gases.4,5 In
fact, a weak-coupling scaling analysis was early
performed,6,7 shedding light on the role of electron-electron
interactions mediated by the Coulomb potential: the resulting
divergences in perturbation theory, once handled conve-
niently, turn out to have a small effect on the low-energy
properties of electrons, as they are marginally irrelevant in
the renormalization group sense. However, that analysis does
not exclude the possibility of phases with broken symmetry,
where interactions play a major role, when the dimensionless
coupling g�e2 /��vF is on order unity or larger, e being the
electronic charge, vF the Fermi velocity, and � the dielectric
constant of the environment in which graphene is
embedded.8–10 This is expected to be the relevant case for
graphene layers in vacuum, where �=1 and g�2.16. Along
that direction, several works in the recent literature are point-
ing out the existence of exotic strong-coupling phases in
graphene layers, where pairing of electron and holes could
give rise to an excitonic state, where a gap would be opened
rendering the system insulating.8,11,12

On the other hand, it is common wisdom in the field of
strongly correlated systems, that the study of the interaction
between two particles can provide important insights on the
many-body physics. The relevance of this kind of studies in
graphene has already been shown when addressing the Cou-
lomb impurity problem.13–16 Here, a critical value of the cou-
pling marks the breakdown of the Dirac vacuum, whose
study requires consideration of the whole many-body prob-

lem. As pointed out recently,17,18 there could be a relation
between this instability and the formation of an excitonic
condensate in the strongly coupled many-body problem.
Thus, two-particle physics seems to underlie many features
of the full many-body problem.

In this paper, we address the problem of two interacting
Dirac electrons in two spatial dimensions, mediated by non-
relativistic central potentials. This feature makes the problem
different from the already well addressed fully relativistic
problem. One of our goals is to shed light on the relation
between the two-body problem and the many-body instabili-
ties, so we pay special attention to the case of the bare Cou-
lomb potential. However, the general problem happens to
show peculiarities that make its separate study worthwhile.
Importantly, the two-body problem cannot be mapped ex-
actly into the one-body Coulomb impurity problem on the
same lattice. In fact, we will show that the two-body problem
presents remarkable differences, the most important being
the singular role played by localized zero-energy states at
those points where the kinetic energy vanishes. Interestingly,
we find that, for zero center-of-mass momentum, the two-
body problem in graphene is equivalent to that of a single
particle in the lattice model proposed by Sutherland,19 where
both lattices are considered in their continuum limit. The
presence of zero-energy states can induce nonanalyticities in
the relative wave function, giving rise to partial localization
phenomena for the Coulomb interacting case. In order to get
a better understanding of the features, we address first the
case of two particles interacting via a step potential.

The paper is organized as follows: Sec. II presents some
general features of the two-body problem. Section III ad-
dresses the case of zero center-of-mass momentum, which is
simpler to analyze and of potential relevance to many-body
instabilities. Sections IV and V study the case of step and
Coulomb potentials, respectively. Section VI discusses some
aspects of the case of arbitrary center-of-mass momentum.
Section VII is devoted to a discussion of the relation of the
present work to many-body phenomena. Finally, Sec. VIII
summarizes the main conclusions. The paper includes three
appendices where some technical issues have been collected.
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II. GENERAL FEATURES

As the main applications of this problem concern
graphene sheets, we start with a formulation of the problem
in terms of the continuum theory of graphene electron mo-
tion, which is known to be described by the Dirac equation.
For a single particle, the wave function is a two-component
spinor characterized by the quantum numbers of spin and
valley, both with degeneracy two. For zero magnetic field
and scalar translationally invariant interactions such as those
which we will consider here, we can neglect the effect of
those extra degrees of freedom and concentrate on the two-
component spinor description. Later, we will discuss the ef-
fect of the spin. The single-particle Dirac equation reads

� v�r� − i�x − �y

− i�x + �y v�r� ���A�r�
�B�r� � = E��A�r�

�B�r� � , �1�

where the pseudospin index i=A, B refers to the two in-
equivalent sites within the unit cell of the honeycomb lattice.

Now, let us consider the two-particle problem. We con-
struct two-particle wave functions from the tensor product of
single-particle ones, �ij�r1 ,r2���i�r1� � � j�r2�. This al-
lows us to write the Schrödinger equation for the interacting
problem that in the language of four-component spinors
reads

�
v�r� − i�x2

− �y2
− i�x1

− �y1
0

− i�x2
+ �y2 v�r� 0 − i�x1

− �y1

− i�x1
+ �y1

0 v�r� − i�x2
− �y2

0 − i�x1
+ �y1

− i�x2
+ �y2 v�r�

�
���AA�r1,r2�

�AB�r1,r2�
�BA�r1,r2�
�BB�r1,r2�

� = E��AA�r1,r2�
�AB�r1,r2�
�BA�r1,r2�
�BB�r1,r2�

� . �2�

As we are dealing with translationally invariant potentials,
we can switch to the center-of-mass frame, defining the new
coordinates R=

r1+r2

2 and r=r1−r2. It is also convenient to
apply the unitary transformation

�1 = �AA,

�2 =
1
	2

��AB + �BA� ,

�3 =
1
	2

��AB − �BA� ,

�4 = �BB, �3�

and use a plane wave ansatz for the center-of-mass part of
the wave function, �i�R ,r�=eiK·R�i�r�. We arrive at the fol-
lowing eigenvalue problem:

�
v�r�

1
	2

Ke−i�K 	2e−i�
i�r +
1

r
��� 0

1
	2

Kei�K v�r� 0
1
	2

Ke−i�K

	2ei�
i�r −
1

r
��� 0 v�r� − 	2e−i�
i�r +

1

r
���

0
1
	2

Kei�K − 	2ei�
i�r −
1

r
��� v�r�

���1

�2

�3

�4

� = E�
�1

�2

�3

�4

� , �4�

where �K�arctan�Ky /Kx� and polar coordinates are used for
the relative coordinate. As a first remark on this equation, we
notice that the center-of-mass coordinate does not decouple
from the relative one, even though the potential only depends
on the latter. This is a consequence of the chiral nature of the
electron carriers, where pseudospin and momentum are
coupled. This kind of coupling also prevents the Hamiltonian
from commuting with the relative angular momentum, thus
frustrating a possible decomposition of the problem in terms
of partial waves.

III. CASE K=0

In order to gain insight into the many-body problem, the
most interesting case is that of zero total center-of-mass mo-
mentum. Then, the two particles have opposite momenta,
like in the Cooper channel in metals. Any pairing effect
should be particularly important in this energetically most
favorable case. It is also the simplest one, because it de-
couples the second component �2�r� from the rest. In effect,
the equation for this component reads
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�v�r� − E�2�r� = 0, �5�

whose solution is �2�r�=0 except at the particular point
v�r�=E, if it exists. That point having measure zero, we will
ignore the �2 component as physically irrelevant. However,
we will see later that, at the point where v�r�=E is satisfied,
zero-energy states are responsible for important nonanalytici-
ties in the other components.

We are thus left with an effective three-component prob-
lem. Remarkably, the K=0 Hamiltonian commutes with the
relative angular momentum, so we can use the following
ansatz for the wave function:

��1�r�
�3�r�
�4�r�

� � �
ei�l−1���1�r�

−
i

	2
eil��2�r�

ei�l+1���3�r�
� , �6�

where the prefactors have been chosen for convenience. The
labeling of the components in Eq. �6� has been changed in
order to accommodate it to the three-component case. After
using this ansatz, the system of equations reads

�
v�r� − E �r +

l

r
0

− 2
�r −
l − 1

r
� v�r� − E 2
�r +

l + 1

r
�

0 − �r +
l

r
v�r� − E

���1�r�
�2�r�
�3�r�

� = 0.

�7�

It is interesting to note that these equations, as well as those
directly derived from the full Hamiltonian for K=0, Eq. �4�,
can also be obtained as the continuum limit of a one-particle
lattice Hamiltonian, defined in a triangular lattice with three
sites in the unit cell, as initially considered by Sutherland.19

A scheme of this lattice is shown in Fig. 1.
Within this formulation, the case l=0 is the most symmet-

ric one

��r� = �
e−i��1�r�

−
i

	2
�2�r�

ei��3�r�
� . �8�

Henceforth, we will refer to it as the s–wave, and as we will
see, simple solutions can be obtained for this case taking
advantage of its symmetry.

A. Symmetry properties

Let us now analyze the symmetry properties of the K=0
solutions. In the original basis, the two-body wave functions
read

�
�AA�r1,r2�
�AB�r1,r2�
�BA�r1,r2�
�BB�r1,r2�

�
K=0

= �
ei�l−1���1�r�

−
i

2
eil��2�r�

i

2
eil��2�r�

ei�l+1���3�r�
� , �9�

where the symmetric combination has been taken �2=0, as
argued above. This wave function has a spinorial structure,
due to the pseudospin of the particles, and a spatial structure
coupled to the former. The symmetry properties under ex-
change of particles are studied by doing the transformation

r1 � r2,

�AB → �BA. �10�

The first transformation, for K=0, translates into �→�+	.
It follows immediately that wave functions with l even are
antisymmetric under particle exchange, while those with l
odd are symmetric. Hence, the s-wave is, interestingly, anti-
symmetric. This somewhat counterintuitive result reflects the
role of the sublattice pseudospin in the orbital wave function.

This has consequences on the total wave functions, once
both spin and valley degrees of freedom are also considered.
Everywhere in this article, we assume that the two particles
belong to the same valley. Since their total wave function
must be antisymmetric, the following two families of solu-
tions appear:

�i� �k=0,l=odd�r1,r2� �
1
	2

��↑↓� − �↓↑�� ,

�ii� �k=0,l=even�r1,r2� � �↑↑� ,

�k=0,l=even�r1,r2� � �↓↓� ,

�k=0,l=even�r1,r2� �
1
	2

��↑↓� + �↓↑�� . �11�

Therefore, the lowest angular-momentum channel �l=0� cor-
responds to a triplet spin state, as opposed to what happens
with ordinary Schrödinger electrons.

FIG. 1. �Color online� Scheme of the lattice proposed by Suth-
erland in Ref. 19. The two-body problem in the low-energy sector
of the honeycomb lattice for K=0, is mathematically equivalent to a
single-particle problem in this lattice. Zero-energy states in the
Sutherland lattice appear due to the existence of a flat band.
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B. Other mathematical properties

Equation �7� comprises three coupled differential equa-
tions. Adding the first and the third equations we may solve
for �2 in terms of �1 and �3

�2 =
r

2l

�r���1 + �3� , �12�

where 
�r��E−v�r�. Subtracting the same two equations,
we obtain

�r�2 = 
�r���3 − �1� . �13�

Differentiating Eq. �12� and relating the result to Eq. �13�,
we obtain

�r�
��1 + �3� =



r
��2l − 1��3 − �2l + 1��1 . �14�

On the other hand, the second equation of system �7� can be
rewritten as

�r��1 − �3� = 
 l − 1

r
−


2r

4l
��1 + 
 l + 1

r
−


2r

4l
��3. �15�

Thus, system �7� can be solved in principle by first solving
for �1 and �3 from Eqs. �14� and �15� and then obtaining �2
from Eq. �12�. The absolute values of �1 and �2 should
remain bounded as long as 
�r� is bounded. A problem may
appear for r→0 in the case of the Coulomb potential
�v�r��r−1�. In such a case, we will see that regular solutions
can be obtained analytically for r→0, yielding in fact a use-
ful starting point to initiate the numerical integration.

Another important issue arises when 
→0, i.e., at those
points where the kinetic energy vanishes, whenever l�0.
For a smooth potential, a linear approximation of 
�r� around
the vanishing point r0 holds, 
�r�=�x+O�x2�, where
x�r−r0. The differential Eqs. �14� and �15� can be approxi-
mated around this point, yielding

d

dx
�x��1 + �3� � 0, �16�

d

dx
��1 − �3� � −

1

r0
��1 + �3� . �17�

The solution for these equations reads �1+�3�−2C2 /x and
�1−�3�2C1+ �2C2 /r0�log�x�. We see that, for l�0, a
smooth potential will show nonanalyticities close to r0 in �1
and �3, while �2 will remain continuous

�1 � C1 +
C2

r0
log�x� −

C2

x
,

�2 �
�r0

2l
C2,

�3 � − C1 −
C2

r0
log�x� −

C2

x
. �18�

Notice, however, that these nonanalyticites give a finite con-
tribution to the probability �dr r���2. Therefore they are
physical solutions of the Dirac equation.

We end by noting that this singular behavior remains un-
altered even in the presence of a small mass in the two-
electron Dirac equation. Mathematically, this happens be-
cause the mass terms in the equations are subleading in the
short-distance expansion around the point r0.

IV. STEP POTENTIAL

Some physical insight into the subtle properties of the
interacting two-particle problem can be obtained by consid-
ering the simpler case of a step potential, which is typically
considered a good effective description of the more general
class of short-range potentials

v�r� = �v0 r  r0

0 r � r0
� . �19�

As usual, the procedure is to construct the solutions for each
region and eventually match them, as shown schematically in
Fig. 2.

For arbitrary energy E, the solutions are given by Bessel
functions of the form

�1 = �aJl−1�kr�
bJl�kr�

cJl+1�kr�
�, �2 = �aYl−1�kr�

bYl�kr�
cYl+1�kr�

� , �20�

where the coefficients and the eigenvalues are determined
from the diagonalization of Eq. �7�, the result being

FIG. 2. Scattering of two particles interacting through a short-
range potential.
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E = v0 + 2k, 
1

2
, 1,

1

2
� , �21�

E = v0 − 2k, 
1

2
, − 1,

1

2
� , �22�

E = v0,
1
	2

�1, 0, − 1 � , �23�

the normalization being chosen to simplify the global wave
function, Eq. �6�. The first solution corresponds to two elec-

trons located in the upper Dirac cone, while in the second
solution the two electrons are in the lower cone. The third
solution describes the case where one particle is in the upper
cone and the other one in the lower cone. Due to the zero
total center-of-mass momentum, this solution has zero total
energy. Notice that, for fixed E, the relation of k with the
energy depends on the solution chosen. The third one is valid
for arbitrary k. Importantly, when E=v0 there are other zero-
energy states that are also solutions of the two-particle Dirac
equation. They have the form

�3 =
r�

�1 + 
� − l + 1

� + l + 1
�2�1/2
1, 0,

� − l + 1

� + l + 1
� , �24�

where � is a continuous parameter that can take any real
value. These polynomial solutions are in general nonphysi-
cal, as they cannot be properly normalized. However, they
can be considered responsible for the nonanalyticities shown
to exist at those points where the kinetic energy vanishes �see
Sec III B�. For the step potential, which is nonanalytic itself,
the existence of zero-energy states induces discontinuities in
the radial wave function, thus changing the usual matching
conditions. How such an anomalous behavior arises is ex-
plained in detail in Appendix A. Notice that in the presence
of a mass, this kind of solutions still exist, since they involve
large derivatives within a narrow distance range.

0 2 4 6 8 10 12 14 16 18 20
r E
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0
0.1
0.2
0.3
0.4
0.5
0.6

φ 1(r
)

8 9 10 11 12
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- 2 C

0 5 10 15 20
r E

-0.4
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0
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0.4

0.6

φ 2(r
)

(b)

(a)

FIG. 3. �Color online� Numerical solution of the step potential
for K=0 and l=1 �r0E=10, E=v0 /2�. Top: first component of the
radial wave function. The discontinuity induced by the zero-energy
states arises naturally in the numerical solution. Bottom: second
component of the radial wave function. As also predicted by the
new matching conditions, the second component does not have a
discontinuity

FIG. 4. Sketch of the Coulomb potential �attractive, in this
case�, including all the relevant length scales discussed in the text.
E is the total energy of the particle, r0 is the classical turning point,
and the region between r1 and r2 is the classically forbidden region.
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FIG. 5. �Color online� Numerical solution of the radial wave
function for the case of Coulomb interaction and zero center-of-
mass momentum. The chosen angular momentum is l=1. Top: wave
functions for g=−0.5 and E�0. Bottom: wave functions for g
=0.5 and E�0. Notice that, where the condition g /r0=E is satis-
fied, a singularity is induced by the localized zero-energy states.
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We note that the traditional criterion of imposing continu-
ity of the wave functions does not work here due to the
insufficient number of matching parameters. To exemplify
this issue, let us consider the situation shown in Fig. 2, where
kI= �v0−E� /2�0 and kII=E /2�0. The solution for region I
only includes Bessel functions of the first kind, Jl�kIr�, as
those of the second kind ones are singular at the origin.
Hence, �i

I�A1Jli
�kIr�. For region II, both solutions must be

considered, �i
II�B1Jli

�kIr�+B2Yli
�kII��r�. Due to the freedom

for global normalization, only two relative values of the
three constants are relevant. Thus, only two parameters re-
main to satisfy the continuity of three equations, one for
every component of the wave function, leaving the problem
overdetermined.

In Appendix A, it is shown that, when zero-energy states
at the matching point are taken into account, a third matching
parameter arises naturally which permits a discontinuity in
the radial wave function. Namely, we obtain

��1�r0� � �1
II�r0� − �1

I �r0� = − 2C ,

��2�r0� = 0,

��3�r0� = − 2C , �25�

where C is the extra parameter to determine. With the new
matching conditions, an exact solution of the K=0 case be-
comes possible, as detailed in Appendix B. It is also inter-
esting to compute the solution of the differential equations
numerically, as shown in Fig. 3. Here, the first two compo-
nents of the radial wave function are plotted. As predicted in

Eq. �25�, the first component shows a discontinuity induced
by zero-energy states at the point r=r0. The same consider-
ation applies to the third component �not shown� but not for
the second one.

It is also worth noting that, as expected, the s-wave shows
a simpler behavior by virtue of its symmetric form. In this
case, inspection of Eq. �7� shows �1�r�=−�3�r� and the
problem reduces to a two-component one. The matching
conditions reduce then to continuity and the s-wave problem
essentially behaves as that of the single particle. As a corol-
lary, Eq. �25� leads to C=0 in this case. Thus, we may state
that the l=0 case has a structure similar to that of the impu-
rity one-body problem in graphene.

V. COULOMB POTENTIAL

We now turn to the more relevant case of a long-range
Coulomb potential, v�r�=g /r, where g=e2 /��vF for low-
energy graphene electrons. It is convenient to find a more
suitable form of Eq. �7� in order to obtain analytical solutions
when possible. This is done by the usual procedure of ana-
lyzing the short and long distance limits. At short distances,
the wave function components have the form �i�r→0�
�r�−1/2, with �2= 1

4 �1+4l2−g2�. On the other hand, the long-
distance wave function behaves like a plane wave of the
form �i�r→���e�iEr/2. Hence, we can make the following
ansatz for the radial wave function:

�i��� = ��−1/2e−�/2�̂i��� , �26�

where we have introduced the dimensionless radial complex
coordinate �= iEr. By applying this transformation, Eq. �7�
becomes

�
i� + g ��� −

�

2
+ � + l −

1

2
0

− 2
��� −
�

2
+ � − l +

1

2
� i� + g 2
��� −

�

2
+ � + l +

1

2
�

0 − ��� +
�

2
− � + l +

1

2
i� + g

���̂1���

�̂2���

�̂3���
� = 0. �27�

The general case is difficult to handle and only the s-wave
channel admits an analytical solution, since it reduces to an
effective single-particle problem. The details of this solution
are summarized in Appendix C. For general angular-
momentum l, Eq. �27� must be solved numerically.

Before addressing the full solution, let us point out the
remarkable behavior of the wave functions at short distances.
As we have seen, it goes like a power law r�−1/2, where
�= 1

2
	1+4l2−g2. For �g�gc�	1+4l2, only ��0 is

acceptable. By contrast, for �g��gc, the � parameter
becomes imaginary and the wave function shows a
pathological short-distance behavior, going like
r−1/2�cos����log r�� i sin����log r�. Thus the wave function

oscillates dramatically toward the center. This kind of behav-
ior was already found in the Coulomb impurity problem,
where it was related to an instability of the wave function
that could signal the breakdown of the Dirac vacuum. For
strong enough couplings, the two-particle interaction would
produce electron-hole pairs from the vacuum, and a full
quantum field-theoretical treatment of the problem could be
necessary. The consequences for the two-body problem of
this effect have not been addressed in this paper, although
from the study of the Coulomb impurity problem, we may
expect a nonlinear screening as a result of the reorganization
of the many-body vacuum.15
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In order to gain further insight into the instability, a semi-
classical analysis like that performed in Ref. 14 can be ap-
plied. Our starting point is Eq. �7� for the Coulomb potential
with the ansatz �i�r�= �̄i

ei2prr

	r
, where pr is a slowly varying

function of r. This justifies the assumption �rpr�0. Equation
�7� then reads

�
g

r
− E i2pr +

l − 1/2
r

0

− i4pr +
2l − 1

r

g

r
− E i4pr +

2l + 1

r

0 − i2pr +
l + 1/2

r

g

r
− E

���̄1

�̄2

�̄3

� = 0.

�28�

The determinant vanishes if one of the following relations is
satisfied:

g

r
= E , �29�

pr
2 = 
g

r
− E�2

−
1

r2 �4l2 + 1� . �30�

The first equation defines a point, r0�g /E, where any func-
tion pr gives a solution thanks to the existence of zero-energy
states, as discussed in the previous section for the step po-
tential. Notice that this condition only is fulfilled for repul-
sive electrons with positive energy or attractive electrons
with negative energy, two cases which are related through a
symmetry transformation. The second equation, on the other
hand, defines a nonclassical region where pr

20. The region
is r1rr2, where r1,2= g

E �
1
E
	4l2+1. Remarkably, we see

that r1r0r2, i.e., the point where zero-energy states
nucleate belongs to this classically forbidden region, as
sketched in Fig. 4.

The Coulomb problem still presents other peculiarities. In
Fig. 5, a numerical estimate of the radial wave functions is
shown for l=1 and two different signs of the interaction
below the critical value. The main feature in this solution
concerns again zero-energy states: when the condition
g /r0=E is fulfilled, zero-energy states must be taken into
account and become responsible for singularities in the first
and third components of the wave function when l�0, as
shown above on general grounds. In the Coulomb case, this
effect has remarkable consequences, such as a drastic sup-
pression of the probability of finding the particle in rr0,
and a tendency to increasingly localize the radial wave func-
tion near r=r0 when the critical point gc is approached from
below �see Fig. 6�. We find numerically that for g=gc the
relative wave function becomes effectively localized near
r=r0.

These results are similar to those obtained for a single
particle in the Sutherland lattice19 with a Coulomb potential.
As shown in Fig. 7, we use a 30�30 lattice with the struc-
ture of Ref. 19 �see Fig. 1� and periodic boundary conditions.
The potential is v�r�=v0e−r/rd /	r2+r1

2, with v0= t�0,
rd=20a and r1=0.5a, where t is the hopping, and a is the

distance between nearest neighbor equivalent atoms. The
states considered to construct the density plots are in the
range of energies 0.25t�E�0.35t. Since they are not eigen-
states of the Hamiltonian, they are expected to contain sev-
eral angular channels. However, as shown in Fig. 7, this
energy spread is sufficient to find an enhancement of the
density in the region near E=v�r�. When states in the range
E0 are considered, the density shows a delocalized distri-
bution. In the plots, notice that there are details coming from
the underlying lattice structure that are not relevant for our
discussion, since we focus on the continuum limit.

In case of considering a small mass in the problem, the
two most prominent features of the Coulomb two-body prob-
lem, i.e., the instability above a critical coupling and the
influence of zero-energy states, are not essentially altered.
The Coulomb instability has its origin in the short-distances
behavior of the wave function, where mass terms are sub-
leading. These terms are also subleading in the expansion
around the classical turning point r0, thus not helping to
prevent the appearance of nonanalyticities caused by zero-
energy states which also exist for nonzero mass.

VI. EXTENSION TO FINITE K

The most salient features we have found in the problem of
two interacting particles are, so far, the influence of zero-
energy states and the appearance of instabilities for the Cou-
lomb potential. Next, we ponder to what extent those results
still apply for the general case of nonzero center-of-mass
momentum.

Zero-energy states are investigated by taking v�r�=E in
the eigenvalue problem �4�. Inspection of the resulting
Hamiltonian reveals that it separates into two independent
sectors. Hence, the Hilbert space of solutions is two-
dimensional, with the general solution for the zero-energy
states reading now

��r,�� = A1�
r� sin���K − ��

0

0

− r� sin���K − ��
�

+ A2�
0

K

2
r� sin���K − ��

r�−1 sin�−1��K − ��
0

� , �31�

where A1 and A2, as well as � and �, can take arbitrary
values. A similar analysis to that of K=0 can be performed
here. For the case of a step potential, they translate into a
change in the matching conditions, since the introduction of
two new parameters �B1 and B2� changes the continuity of
the wave function

��1�r0,�� = B1��,K,�K� ,

��2�r0,�� = B2��,K,�K� ,
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��3�r0,�� = 0,

��4�r0,�� = − e2i�KB1��,K,�K� . �32�

Linearization of the equations close to the point where 
�r�
=0 �the classical turning point� shows that, even for smooth
potentials, singularities in the relative wave functions arise.
Still, they are square integrable and give a finite contribution
to the probability.

As for the Coulomb instability, its existence can be
probed by checking the short-distance limit of the full
Hamiltonian given in Eq. �4�, for the case v�r�=g /r. It is not
difficult to see that the small r limit is controlled by
K-independent terms. Thus, for r→0 we recover the K=0
limit, where an instability has already been identified. Hence,
we expect this instability to be a general feature of the Cou-
lomb problem.

VII. RELEVANCE TO MANY-BODY PHENOMENA

As mentioned in the Introduction, it can be expected on
general grounds that the two-body problem with Coulomb
interactions provides information on the more complicated
many-body problem in graphene. This is especially relevant
in the strong-coupling regime, as several works in the litera-
ture suggest the possibility of a new insulating phase above a
certain critical coupling, where electron and holes would
bind forming excitons and opening up a gap.

It has been pointed out in the literature17,18 that the break-
down of the Dirac vacuum in the attractive Coulomb impu-
rity problem could be related to such a formation of excitons
in graphene for strong enough coupling. We have seen in this
article that this behavior is also present in the two-body
problem, which should be even more relevant to the many-
body physics

In order to understand the connection, we must notice that
in principle the problem of an interacting electron and hole
can be mapped into that of two attractive electrons, with

similar symmetry properties. However, like for the Coulomb
impurity problem, a more rigorous mapping would be per-
formed by considering the existence of the Dirac sea, which
constraints, by Pauli’s principle, the states accessible to the
electron-hole pair, in analogy to the Cooper problem.20 Such
a treatment, however, would require to work in a different
basis for which the analytical results obtained in this paper
do not hold,31 and is thus beyond the scope of this paper.

We note in this regard that the breakdown of the Dirac
vacuum in the two-body problem could be a signature of the
excitonic instability in the many-body system. As we have
already shown, the critical value for which the breakdown
occurs depends on the scattering channel. For the most sym-
metric one, the s-wave, we find gc=1, which should be com-
pared to the critical values obtained for the Coulomb impu-
rity problem, gc

CI=0.5.13–16 For higher angular-momentum
channels, the critical couplings increase. As an example,
gc=2.24 for l=1. However, at low energies those higher an-
gular momenta are usually less important. Hence, the s-wave
critical coupling should provide an educated guess of the
corresponding value for the expected many-body instability.
Remarkably, the critical values obtained so far in the theo-
retical literature are close to the value predicted here for the
two-body problem. Monte Carlo calculations in the lattice
give a critical coupling gc

MC1�1.11 �Refs. 12 and 21� and
gc

MC2�1.66,22 depending on the model used to simulate
graphene electrons. Renormalization Group calculations
yield gc

RG�0.833.23 Finally, a variational approach to the
excitonic condensate has been recently reported to show a
transition above the critical coupling gc

var�1.13.24 The two-
body problem with Coulomb interactions of strength above
the critical coupling has not been addressed in this paper. As
mentioned above, from the study of the Coulomb impurity
problem it can be expected that the instability, which pro-
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r E
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0.8

1

P(
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g = 0.1
g = 0.5
g = 2.24 (g

c
)

FIG. 6. �Color online� Probability of finding one electron within
a distance r from the other electron, P�r�=�i�0

rd2r��i�r��2, for
K=0, l=1, and various values of the dimensionless Coulomb cou-
pling constant g, in the important case where a classical turning
point exists �rE=g�. Here, the influence of zero-energy states trans-
lates into �i� a suppression of the electron density for rr0, and �ii�
a tendency to concentrate the probability near r=r0 as the critical
coupling gc is approached. The results are normalized to their value
at rE=5.

FIG. 7. �Color online� Logarithmic density distribution of the
two-particle wave function interacting with a Coulomb potential
�see text for details�, for K=0. One of the particles is assumed to be
placed at the center of the square. The equations are discretized
using the Sutherland lattice, and the energy range of the integrated
states is chosen such that they cover the region where the condition
g=r0E is fulfilled. As expected, the results show a clear concentra-
tion of the density at this point r0. The short-length features of the
density plot reflect the underlying lattice structure.
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duces a reorganization of the Dirac vacuum, leads to a non-
linear screening of the interactions.15 This effect should be
analyzed carefully in order to establish its connection with a
possible formation of excitons, where it could happen that
still the presence of the Dirac sea as a constraint is necessary
in order to produce a bound state. After all, the results pre-
sented in this paper do not shed sufficient light on the con-
sequences of the actual many-body instability.

Regarding the spin degree-of-freedom, as discussed in
Sec II, if both electrons belong to the same valley the s-wave
channel would correspond to a triplet state in the spin sector.
This fact may be highly relevant for the study of the exci-
tonic instability in the presence of an external magnetic field.

There is a second aspect of the two-body problem in
graphene that could have consequences on the more compli-
cated many-body problem: the influence of zero-energy
states for l�0 angular-momentum channels. As we have
seen, in those cases where the kinetic energy vanishes at
some point �positive total energy and repulsive potential, or
negative total energy and attractive potential�, zero-energy
states induce singularities in the wave function which trans-
late into an increasing probability of finding the particle at
the classical turning point r0, when the critical coupling gc is
approached.

Let us discuss the role of the carrier density in this sce-
nario. We only consider couplings below the critical one in
case of Coulomb interactions, since we expect a description
in terms of linear screening to be applicable. In doped
graphene, electrons at the Fermi surface have an energy
EF=vFkF=vF�4	n /Ns�1/2, where n is the electron density in
the upper cone and Ns=4 the valley and spin degeneracy.
This defines a classical return distance r0�g /EF�n−1/2

for the Fermi surface electrons at which density correlation
should peak. On the other hand, the static screening of
the Coulomb interaction in doped graphene is characterized
by the Thomas-Fermi �TF� screening length �TF
=g−2�4	nNs�−1/2,25–27 which shows a similar density depen-
dence, namely, �TF�n−1/2. Thus the ratio between the classi-
cal return and screening distances is independent of the den-
sity: r0 /�TF=Nsg

2. For many cases, we expect r0 /�TF�1,
which places r0 beyond the screening length, i.e., where the
bare Coulomb interaction, for which r0 has been calculated,
does not hold. Naively this might invalidate the physics as-
sociated to zero-energy states, which is expected to occur at
r=r0. However, it is easy to note that the density correlation
peaks have to be a robust feature of the many-body problem.

We have seen that zero-energy states intervene at the
point where v�r�=E. It is quite reasonable to assume that, in
a many-body context, that condition must be replaced by
vscr�r0�=EF, which defines the classical return distance r0 for
the electron gas if vscr�r� is the screened Coulomb interaction
potential. Within the TF approximation, the screened poten-
tial has the form5,28 vscr�r0�= �e2 /r�F�r /�TF�, where F�x� is a
monotonically decreasing function satisfying F�x��1 for
x�1 and F�x��x−2 for x�1. Dimensional analysis shows
that the dressed r0 also scales like n−1/2, which suggests that
zero-energy states play a role even in the presence of screen-
ing.

VIII. CONCLUSIONS

The study of two interacting Dirac electrons in graphene
has led us to unveil intriguing properties of charge carriers in
this material. On the one hand, due to the chiral nature of the
low-energy electrons, the center-of-mass and relative coordi-
nates are coupled even in the presence of central potentials.
This precludes a simple decomposition in terms of an effec-
tive one-body scattering problem. However, in the case of
zero total momentum, the two-body problem can be mapped
into that of a single particle in the Sutherland lattice.19

Zero-energy states turn out to play a pivotal role in the
scattering processes, changing the matching conditions in the
simple case of a step potential, and introducing singularities
in the wave function for general potentials, including Cou-
lomb.

The case of Coulomb interaction is most relevant for the
analysis of strong-coupling instabilities. The reason is, elec-
trons in weakly doped graphene have poor screening proper-
ties that, unlike in the conventional two-dimensional electron
gas,7,29 are expected to preserve the long-range tail of this
potential. Although the problem cannot be exactly mapped
into the Coulomb impurity problem, widely studied in the
literature, it still shows similar features such as the existence
of a critical coupling above which wave functions become
ill-defined, a likely signature of the Dirac vacuum break-
down. In a many-body context, this could signal the forma-
tion of a new insulating phase characterized by electron-hole
pairing. An analysis of the s-wave scattering channel for K
=0 gives a critical coupling for the instability of gc=1, in
rather good agreement with the critical values obtained in
theoretical studies of the full many-body problem. We may
also note that, due to the symmetry properties of the wave
functions, this l=0 channel is accompanied by a spin triplet
state if, as assumed throughout this paper, both particles be-
long to the same valley.

The Coulomb potential shows other interesting properties.
We have shown that the effect of zero-energy states in l�0
angular channels is that of partially localizing the electron
density near the classical turning point. The degree of local-
ization increases dramatically as the critical coupling gc is
approached. Quite generally, we may expect the features
found in the two-body problem to have wide ranging impli-
cations on the many-body problem in graphene lattices.
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APPENDIX A: DERIVATION OF THE MATCHING
CONDITIONS

As mentioned in the main text �Sec. IV�, the solutions
located at the point v�r�=E can induce discontinuities in the
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wave function. Physically, this can be understood in terms of
localized states that live in this region and which are built
from the complete set of polynomical solutions given in Eq.
�24�. Let us develop the argument in detail.

For greater clarity, we may modify the step potential near
the point r0 where v�r0�=E in such a way that v�r�=E �i.e.,

�r�=0 in the vicinity of r0, namely, for r0−�rr0+�,
where at the end of the calculation �→0. From Eqs. �12� and
�13� in the main text, it follows that �r�2=0 and, if l�0,
�2=0. On the other hand, Eq. �15� becomes, in that small
interval,

r�r��1 − �3� = �l − 1��1 + �l + 1��3. �A1�

The existence of zero-energy states �see Eq. �24� allows us
to introduce functions of arbitrarily high slope in the small
interval of length �. We adopt the simplest ansätze for the
two components

�1�r� = a + b�r − r0� , �A2�

�3�r� = c + d�r − r0� . �A3�

In the slightly modified potential, both components must be
continuous everywhere, so we may impose

�1�r0 � �� = a � b� � �1
I,II�r0� , �A4�

�3�r0 � �� = c � d� � �3
I,II�r0� . �A5�

As a result, if ��i��i
II�r0�−�i

I�r0�,

b = ��1/2�, d = ��3/2� .

If we allow for nonzero discontinuities, ��i�0, we con-
clude that, for �→0, both �1�=b and �3�=d tend to infinity in
magnitude. Thus, Eq. �A1� can be approximated as

�r�1�r� = �r�3�r� , �A6�

i.e., b=d and thus,

��1 = ��3 � − 2C . �A7�

The upshot is that, thanks to the existence of zero-energy
states in the immediate vicinity of r0, a new parameter
emerges that allows for a discontinuity in the components �1
and �3. The parameter C is thus adjusted to render the
matching problem well determined.

Interestingly, if one were to perform a similar analysis to
the one-body problem of a step potential impurity, one would
introduce a similar ansatz for the �only existing� two compo-
nents of the problem. Zero-energy states could in principle
also play a role in the vicinity of the point analogous to r0.
However, we find that a linear ansatz similar to that consid-
ered above would lead to a zero slope. In other words, even
allowing for the existence of zero-energy states, the wave
function remains continuous at all points, including r0. We
could say that zero-energy states do not intervene because
they are not necessary, and this is so because, unlike in the
two-body problem, the matching problem is well defined
from the start.

Once we have taken �→0 and accepted that the abrupt
change in sign of 
�r� at r=r0 leads to identical discontinui-

ties in �1 and �3 while keeping �2 continuous, we may
derive, from the general relations in Sec. III B, a few more
conclusions on the behavior of the solutions around the step.

From the fact that 
 and �1, �3 are bounded, it follows
from Eqs. �12� and �13� that �2 and �r�2 are also bounded. If
we integrate Eq. �A8� in an infinitesimally small region
around the step, we conclude

��
��1 + �3� = 0, �A8�

where � means total variation across the abrupt step. If we
combine this result with Eq. �A7�, we conclude that the com-
mon discontinuity of �1 and �3 is directly determined by the
step discontinuity in the potential ��
=−v0�. Therefore, Eq.
�A8� implicitly yields the discontinuity C, which is needed to
allow �2 to be continuous. Specifically, we obtain

C =
1

4

1 −

�
I�

II ���1

I + �3
I � , �A9�

where 
I=E−v00 and 
II=E�0.
From Eq. �13�, it follows that �r�2 experiences a discon-

tinuity across the step, which closely follows the discontinu-
ity of 
�r�, given that �1−�3 is continuous. We also note
from Eq. �12� that, for l�0, �2 goes quickly through zero as

�r� becomes 0 at r=r0. However, it recovers quickly from
that sharp dip to become globally continuous across the step,
as can be inferred from Eqs. �12� and �A8�. By contrast,
when l=0, �2 remains strictly continuous across the step.

APPENDIX B: ANALYTICAL SOLUTION OF THE
SHORT-RANGE INTERACTING PROBLEM FOR ZERO

CENTER-OF-MASS MOMENTUM

We start from the scattering problem sketched in Fig. 2.
The two-electron problem is written in terms of an effective
single-electron radial equation in the case K=0. The energy
of the incident pair is Ev0. For rr0, only solutions non-
singular at the origin are valid, while for r�r0, a general
solution is a linear combination of incoming and outgoing
wave functions. Hence, we have, up to a normalization con-
stant �see Eqs. �20�–�23�,

�l
I = �

1

2
Jl−1�kIr�

− Jl�kIr�
1

2
Jl+1�kIr� � ,

�l
II = A�

1

2
Jl−1�kIIr�

Jl�kIIr�
1

2
Jl+1�kIIr� � + B�

1

2
Yl−1�kIIr�

Yl�kIIr�
1

2
Yl+1�kIIr� � , �B1�

where the coefficients of the wave function are those of posi-
tive energy for region I and those of negative energy for
region II. Moreover, in Eq. �B1�, kI= �v0−E� /2 and
kII=E /2.
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As already seen in Appendix A, both solutions must be
matched at r=r0 with a matching condition that includes an
arbitrary coefficient, say C, to be adjusted. The system of
equations reads now

�
1

2
Jl−1�kIIr0�

1

2
Yl−1�kIIr0� 2

Jl�kIIr0� Yl�kIIr0� 0

1

2
Jl+1�kIIr0�

1

2
Yl+1�kIIr0� 2��A

B

C
� = �

1

2
Jl−1�kIr0�

− Jl�kIr0�
1

2
Jl+1�kIr0� � ,

�B2�

which can be solved by using Cramer’s method. Invoking
Bessel function properties, the coefficients are found to be

A = −
	r0

2
�Jl�kIr0�

d

dr0
Yl�kIIr0� +

kII

kI
Yl�kIIr0�

d

dr0
Jl�kIr0�� ,

�B3�

B =
	r0

2
�Jl�kIr0�

d

dr0
Jl�kIIr0� +

kII

kI
Jl�kIIr0�

d

dr0
Jl�kIr0�� ,

�B4�

C =
l

4
Jl�kIr0�
 1

kIIr0
+

1

kIr0
� . �B5�

These analytical expressions reproduce the numerical results
obtained by discretizing the differential equations, including
the magnitude of the jump, −2C, and Eq. �A9� from Appen-
dix A.

APPENDIX C: ANALYTICAL SOLUTION OF THE s-WAVE
CHANNEL FOR THE COULOMB INTERACTING

PROBLEM

We start from the system of differential equations given in
Eq. �27�. The s-wave channel corresponds to l=0. In this
case, �̂1=−�̂3, and the system reduces to one of only two
components, with a structure resembling that of the Coulomb
impurity problem. We define

Q1 = �̂1 −
i

2
�̂2, �C1�

Q2 = �̂1 +
i

2
�̂2, �C2�

which fulfill the following coupled differential equations:


��� + � − i
g

2
�Q1 +

Q2

2
= 0, �C3�


��� − � + � + i
g

2
�Q2 +

Q1

2
= 0, �C4�

The solutions are given by Kummer functions:30

Q1 = C1F
� − i
g

2
,2� + 1;�� , �C5�

Q2 = C2F
� + 1 − i
g

2
,2� + 1;�� , �C6�

By using the property F�a ,b ;0�=1 and the limit �→0 of the
system of Eqs. �C4�, we obtain the ratio

c21 �
C2

C1
= − 2�� − ig/2� = e−i arctan g/2�. �C7�

Hence, the solution is

��r� �
1

2
�iEr��−1/2e−iEr/2�

F
� − i
g

2
,2� + 1;iEr� + c21F
� + 1 − i

g

2
,2� + 1;iEr�

2iF
� − i
g

2
,2� + 1;iEr� − 2ic21F
� + 1 − i

g

2
,2� + 1;iEr�

− F
� − i
g

2
,2� + 1;iEr� − c21F
� + 1 − i

g

2
,2� + 1;iEr� � �C8�

up to an overall normalization constant that can be determined by matching the solution to the r→� limit.
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